skip to main content


Search for: All records

Creators/Authors contains: "Dunietz, Barry D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 2, 2024
  2. Strong excitonic coupling in photosynthetic systems is believed to enable efficient light absorption and quantitative charge separation, motivating the development of artificial multi-chromophore arrays with equally strong or even stronger excitonic coupling. However, large excitonic coupling strengths have typically been accompanied by fast non-radiative recombination, limiting the potential of the arrays for solar energy conversion as well as other applications such as fluorescent labeling. Here, we report giant excitonic coupling leading to broad optical absorption in bioinspired BODIPY dyads that have high photostability, excited-state lifetimes at the nanosecond scale, and fluorescence quantum yields of nearly 50%. Through the synthesis, spectroscopic characterization, and computational modeling of a series of dyads with different linking moieties, we show that the strongest coupling is obtained with diethynylmaleimide linkers, for which the coupling occurs through space between BODIPY units with small separations and slipped co-facial orientations. Other linkers allow for broad tuning of both the relative through-bond and through-space coupling contributions and the overall strength of interpigment coupling, with a tradeoff observed in general between the strength of the two coupling mechanisms. These findings open the door to the synthesis of molecular systems that function effectively as light-harvesting antennas and as electron donors or acceptors for solar energy conversion. 
    more » « less
  3. 2-R-1 H -1,3-Benzazaphospholes (R-BAPs) are an interesting class of σ 2 P heterocycles containing PC bonds. While closely related 2-R-1,3-benzoxaphospholes (R-BOPs) have been shown to be highly photoluminescent materials depending on specific R substituents, photoluminescence of R-BAPs has been previously limited to an example having a fused carbazole ring system. Here we detail the synthesis and structural characterization of a new R-BAP (3c, R = 2,2′-dithiophene), and compare its photoluminescence against two previously reported R-BAPs (3a, R, R′ = Me and 3b, R = 2-thiophene). The significant fluorescence displayed by the thiophene derivatives 3b ( φ = 0.53) and 3c ( φ = 0.12) stands in contrast to the weakly emissive methyl substituted analogue 3a ( φ = 0.08). Comparative computational investigations of 3a–c offer insights into the interplay between structure–function relationships affecting excited state relaxation processes. 
    more » « less
  4. null (Ed.)